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Summary

We present a new approach to automatically define a quasi-optimal minimal set of pharmacophoric points mapping
the interaction properties of a user-defined ligand binding site. The method is based on a fitting algorithm where
a grid of sampled interaction energies of the target protein with small chemical fragments in the binding site is
approximated by a linear expansion of Gaussian functions. A heuristic approximation selects from this expansion
the smallest possible set of Gaussians required to describe the interaction properties of the binding site within a
prespecified accuracy. We have evaluated the performance of the approach by comparing the computed Gaussians
with the positions of aromatic sites found in experimental protein–ligand complexes. For a set of 53 complexes,
good correspondence is found in general. At a 95% significance level, ∼65% of the predicted interaction points
have an aromatic binding site within 1.5 Å. We then studied the utility of these points in docking using the program
DOCK. Short docking times, with an average of ∼0.18 s per conformer, are obtained, while retaining, both for
rigid and flexible docking, the ability to sample native-like binding modes for the ligand. An average 4–5-fold
speed-up in docking times and a similar success rate is estimated with respect to the standard DOCK protocol.

Abbreviations: RMSD – root mean square deviation; ASA – Atomic Shell Approximation; LSF – Least-Squares
Fitting; 3D – three-dimensional; VDW – Van der Waals.

Introduction

For large-scale docking in virtual screening applica-
tions, the ligand binding site is often preprocessed to
a set of interaction points, representing in a simplified
way the spatial neighborhoods likely to be occupied by
the atoms of high-affinity binders. These transform-
ations are convenient, as they allow the use of fast
algorithms, such as those based on graph-matching
techniques [1]. Preprocessing is inspired by the lock
and key concept of ligand–receptor interactions, and
follows typically one of these two approaches: either
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the space adjacent to the binding pocket is chemic-
ally mapped with appropriate probes and interaction
points are defined based on energy or statistical cri-
teria, or a negative image of the protein binding region
is generated and approximated with a set of spheres
mimicking shape complementarity in a geometrical
sense. For the first technique, various potential energy
functions and knowledge-based approaches are avail-
able. Molecular mechanics programs such as GRID
[2–6], MCSS [7–9], or the Autogrid program within
Autodock [10], among others, use atom probes or
functional groups to estimate the interaction energy
of the probe with the site, allowing the identification
of energetically favorable positions for various lig-
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and functionalities. X-SITE [11], SuperStar [12] or
DrugScore [13], on the other hand, use knowledge-
based potentials derived from the analysis of crystals
to find favorable positions for chemical groups. When
shape complementarity is sought, a popular technique
is to compute the Connolly surface [14, 15] of the
macromolecular cavity and then proceed to find a set
of spheres able to fill the volume of the cavity. The
sphere centers in this ‘negative image’ of the site
represent putative ligand atom positions. This is the
technique used within the SPHGEN program in the
DOCK package [16–18].

When using interaction points, the time required
for a docking calculation increases with the number of
points to match. Optimally designed sets of interaction
points can therefore help to increase the performance
of virtual screening computations. By optimal design
we refer to the smaller set of points carrying max-
imal information about the interaction properties of
the pocket. For example, by the method used in their
construction, negative image spheres carry limited en-
ergetic and chemical information beyond their primary
geometric information. Furthermore, for a given en-
closed volume, it is possible to find redundant sets
of spheres; sets filling the cavity within similar occu-
pancies but having different numbers of elements and
different configurations. Conclusive demonstration of
the importance of optimally placing interaction points
has been provided by Zavosdszsky et al. [19], who
have recently shown that improving the representa-
tion of hydrogen-bonding and hydrophobic interaction
points by a knowledge-based approach improves the
quality of docking and the docking scores of known
ligands. Similarly, Joseph-McCarthy and Alvarez [20]
have shown with DOCK that biasing the search using
points located in local energy minima allows for more
effective sampling of the target site.

The problem is how to optimally select these
points. The rugged energy landscape of the protein–
ligand interaction makes it difficult to automatically
select them on the basis of the local properties of the
energy distribution. Compression algorithms able to
summarize the global energy density over the bind-
ing site are required. Research on such algorithms
is receiving increasing attention. Nissink et al. [21]
have presented anisotropic Gaussian-type descriptors
to approximate IsoStar [22] propensity distributions.
Rantanen et al. [23], on the other hand, have modeled
propensity data with Gaussian mixtures within a
Bayesian framework. So far, more emphasis has been
placed on the fitting properties than on the number

of fitting variables. Here, we address the problem of
transforming a grid energy map to a set of interac-
tion points, specifically seeking a minimum number
of variables able to fit the scatterplot within a pre-
specified error. We first map the binding of molecular
fragments to ligand binding sites [24] by computing
a grid-based potential similar to the ones produced
by GRID or MCSS, and then proceed to transform
the map to a reduced set of Gaussian functions which
contain the interaction centers and associated radii we
seek to deduce. In what follows we provide a de-
scription of the methodology and describe the main
computational experiments we have used to validate
it.

Methods

Computation of the molecular electron densities of
small organic molecules

Our initial tests of fitting performance were carried
out using molecular electronic densities, since these
afford an easy and intuitive evaluation of the per-
formance of the methodology. For the computation
of the molecular electron density in isolated, small
molecules, we used a promolecular representation ac-
cording to the Atomic Shell Approximation (ASA)
[25, 26]. Within this approximation, densities are
presented with the simple general form of Equation 1,
where shell occupation ni is constrained to positive
values.

f (x) =
∑
a

∑
i∈a

nicie
− (Ra−x)2

2σ2 (1)

Grid description of the binding space and energy
computation

We use a fragment positioning method to determine
energetically favorable positions for various chemical
fragments. First, appropriate chemical fragments are
docked in the binding site. The protein–ligand inter-
molecular energy is pre-computed using an underlying
3D grid of 1 Å [27]. The potential we have used con-
sists of non-bonded interaction energies (in kcal/mol)
computed with the AMBER force field using an all-
atom model [28]:

EMM =
Nprot∑

i

Nlig∑
j

[
Aij

r12
ij

− Bij

r6
ij

+ 332
qiqj

εrij

]
(2)
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Aij and Bij represent the van der Waals (VDW)
parameters of the atom types to which atoms i and
j belong, qi and qj are the partial charges (in elec-
tron units) of atoms i and j, respectively, and rij is
the distance (in Å) between them. A dielectric con-
stant of ε = 4 or ε = rij was used to scale down
the electrostatic term. For each fragment, a complete
enumeration of all possible orientations of the rigid
molecular fragments in the active site of the rigid pro-
tein is carried out. The molecule is translated within
the box using a grid spacing of 1.0 Å, and at each
grid point, a complete sampling of the rotational space
is achieved by computing all non-degenerate sets of
Euler angles obtained with a resolution of 27◦ [29]. At
each rotational and translational point, the fragment is
subjected to a rigid body off-lattice energy minimiza-
tion using the SIMPLEX algorithm from Nelder and
Mead [30]. Then, the minimum energy found for the
fragment is stored for that grid point, providing the
discrete function f (x) to be subjected to Gaussian fit-
ting in order to define the interaction points for that
particular fragment.

The computed grid contains those regions with fa-
vorable interactions for a given probe with the binding
site. From here, we want to obtain a simpler descrip-
tion in the form of a set of Gaussian centers with
associated radii accounting for the same information.
We want the set of interaction points deduced to be
optimal or close to optimal, i.e., the minimal set of
Gaussians able to account for the energy surface stored
in the grid within a prespecified error. In the particular
case of the tests reported in this paper (Tables 2 and
3), the grid has been defined from the X-ray structure
of the complexes, defining a box enclosing the bound
ligand and imposing a distance of at least 5 Å between
any atom of the ligand and the box edges.

Transformation of the grid energies to reduced
Gaussian expansions

Once we have an adequate representation of the neg-
ative image of the receptor binding site in the form
of a discrete function f (x), evaluated in a suitable
region of the space x ∈ �d , we focus our attention
to obtaining a fitting algorithm capable of minimizing
the required size of the Gaussian expansions, while
keeping the fitting accuracy within a given error. The
problem can be stated formally as follows: given a
discrete representation of a function f (x), f (x) :=

{xi , f (xi )}Ni=1 with x ∈ �d , and an error bound ε > 0,
find a minimal set of normalized Gaussian functions:

gj (x) = aj e
− (xj −x)2

2α2
j




M

j=1

(3)

such that their linear combination fits the function
f (x) within a given error ε.:∥∥∥∥∥∥f (x) −

M∑
j

cjgj (x)

∥∥∥∥∥∥ < ε (4)

It has been shown that deciding whether a given
(ε,M)-approximation to f (x) exists is a NP-complete
problem [31]. Furthermore, finding the M-optimal
(ε,M)-approximation (i.e., the minimal set) has been
shown to be NP-hard [32]. Fortunately, we do not
need to solve the problem exactly; we are satisfied
with a good approximation to it. We have devised
an approximation method able to provide suboptimal
solutions in reasonable computation times. Our ap-
proach is based on splitting the problem in two steps:
first, we provide a method to find the optimal set of
coefficients, centers and bandwidths

{
cj , xj ,αj

}M

j=1,
for a given M; then, we describe an approximation to
the minimal M satisfying the above inequality for a
given ε. We proceed to discuss each of the two steps.

1. Finding the optimal set of coefficients, centers and
bandwidths. Since five parameters need to be sim-
ultaneously established per center, the first step in
the procedure, as stated, is highly non-linear and ill-
conditioned. To work around this difficulty, we have
made use of discrete basis set representations. With
an a priori fixed basis set, we linearize the first part
of the problem, which is then reduced to finding the
appropriate coefficients for each member of the basis
set. Assuming that a set of known Gaussian functions
of size M has been predefined (our basis set), our goal
is to linearly combine the Gaussians to minimize the
following norm:

min

∥∥∥∥∥∥f (x) −
M∑
j

cjgj (x)

∥∥∥∥∥∥ (5)

The sum is over the M Gaussians in our basis
set. The problem is reduced to finding the M coef-
ficients cj . Equation 5 can be expressed in matrix
notation and, after standard manipulations, the vector
of coefficients can be obtained as:

c = S−1t (6)
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Equation 6 is a typical Least Squares Fitting (LSF)
problem. Elements ti and Sij in vector t and matrix S,
respectively, are computed as:

ti =
Np∑
k

f (xk)gi(xk) (7)

Sij =
Np∑
k

gi(xk)gj (xk) (8)

The sum is over the number of grid points Np.

2. Determination of the minimal M. In a first step,
a sequence of subspaces is built such that the first
subspace – the coarser level of resolution in the se-
quence – is contained within the second one, which
in turn is contained in the third one, and so on. The
procedure generates an overcomplete basis set, termed
the dictionary, and stops when the original grid is fit-
ted to a desired accuracy. From here we shall select
the minimal M , by selecting the smallest number of
functions from the subset able to fit the grid equally
well. This makes use of the orthogonal matching
pursuit [31] algorithm, originally described by Davis
et al. [32]. It is a greedy algorithm devised to produce
suboptimal function expansions by iteratively select-
ing from the dictionary the Gaussian function with
the largest overlap (inner product) with the grid. The
search process for the best match is repeated with the
grid residue from the previous iteration until it reaches
the specified tolerance.

Let D = {gγ}γ∈� be a predefined dictionary of �

Gaussian functions of unit norm (
∥∥gγ

∥∥ = 1), andf our
potential to fit (for the sake of clarity, we drop all
grid dependencies to simplify nomenclature, i.e., f ≡
f (x)). Let us define the inner product of the grid and
any function in the dictionary as:

< f, gγi >=
Np∑
k

f (xk)gγi (xk) (9)

The matching pursuit algorithm starts by approx-
imating the grid in the first iteration with the Gaussian
producing the largest projection in our dictionary, so
that:{

gγ0 = arg maxgγ∈D{< f, gγ >}
f =< f, gγ0 > gγ0 + R0

f

(10)

The grid is then updated to the residue, i.e., f =
R0

f and the procedure is repeated. Because an inner

product is used, the residue obtained at each itera-
tion has squared norm as small as possible. At the n
iteration, the grid is approximated as:

f =
n−1∑
k=0

< Rk
f , gγk > gγk + Rn

f (11)

It is guaranteed that in the limit, as n approaches in-
finite, Rn

f tends to zero. If the functions in the basis set
are not orthogonal (such us the Gaussians in our case),
convergence is slow, since every new added function
introduces additional components in the previous fit-
tings. Faster convergence rates can be obtained by
orthogonalizing first the directions of projection [31,
32]. We implemented this orthogonalization step using
Gram-Schmidt. Let us denote each orthogonal func-
tion already used in the fitting as u. At step k, each
added Gaussian is first orthogonalized with respect to
the k − 1 functions already in use, as follows:

uk = gγk −
k−1∑
p=0

< gγk , up >∥∥up

∥∥2 up (12)

The approximation to the function converges ex-
actly, at most in N steps, so that the function can be
approximated, before the addition of the last Gaussian,
as:

f =
N−1∑
n=0

< Rn
f , gγn >

‖un‖2
un + RN

f (13)

With error:

∥∥∥RN
f

∥∥∥2 = ‖f ‖2 −
N−1∑
n=0

∣∣∣< Rn
f , gγn >

∣∣∣2

‖un‖2
(14)

The GAGA algorithm

The above procedure has been implemented in a pro-
gram, which we now proceed to describe. The grid
interaction energies are computed as specified above.
Van der Waals energies above 5 kcal/mol are set to
zero, in order to avoid fitting artifacts. The fitting pro-
gram then uses as input the grid file to be subjected to
Gaussian mapping, together with a fitting error to meet
(usually a Rfactor of 0.5, see Equation 15) or a num-
ber of Gaussians to obtain (15 by default). Then, the
algorithm carries out the following set of sequential
steps:
1. Face-centered cubic lattice building: The algorithm
starts by setting up a face-centered cubic lattice span-
ning the grid to fit. Note that this lattice is different
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Figure 1. Rfactor as a function of the number of Gaussian centers introduced by the matching pursuit algorithm in the fitting process of
ASA-based electronic densities. Results for four different molecules (indicated in the figure and corresponding to those in Figure 2) are shown.

Table 1. GAGA performance in electron density fitting. The table
shows various measurements of performance for the Gaussian fitting
algorithm in reproducing the molecular shapes displayed in Figure 1.
The first column shows the PDB ID of the ligand used in the fitting
experiment; the second gives the number of atoms in the ligand (nat),
coincident with the number of functions used by the fitting algorithm
(nf ); the third shows the fitting error between densities (before and
after the Gaussian approximation); and the last column reports the
RMSD (expressed in Å) of the ligand coordinates after maximizing
the electron density similarity, as measured by the Carbó index [33].

PDB nat/nf Rfactor RMSD

1qf1 53 0.313 0.126

1dwd 69 0.327 0.341

1bju 34 0.297 0.241

1b9v 50 0.276 0.104

from the initial grid containing the potential, which
uses a cubic lattice. A face-centered cubic lattice is
used here because it can provide an optimal pack-
ing of spheres in 3D cartesian space, leading to more
compact solutions.
2. Dictionary generation:
(i) Distribute the initial set of Gaussians over the

face-centered cubic lattice. Initially, 4 normalized
Gaussians per axis are placed, with bandwidth α =
max(Lx,Ly,Lz)/

√
2 and Lx,Ly,Lz being the grid di-

mensions in x, y and z, respectively. Functions
overlapping with receptor atoms are removed (we
use AMBER radii for the receptor plus a tolerance
factor of 1.1). From this starting configuration of
Gaussians a first LSF solution is computed (with
Equation 6), providing the initial set of Gaussian
coefficients and an initial error.

(ii) Recursively divide the Gaussian distance by
half, multiply by two the number of Gaussi-
ans per axis, and set the bandwidth to α =
max(Lx,Ly,Lz)/2Rs

√
2, where Rs is the recursion

step. At each step, compute the LSF solution
to the input density. Stop when the input error
level or maximum number of Gaussians have been
reached. By default, the program uses a Rfactor of
0.5 (Equation 15) or a maximum of 15 Gaussi-
ans. Collect all Gaussians in a single dictionary of
functions.

3. Orthogonal Matching Pursuit:
(i) Compute the overlap with the target function of all

functions in the dictionary (Equation 9). Then find
the Gaussian function providing maximum over-
lap with the input grid (Equation 10). Update the
function to fit with the computed residual.

(ii) Find the next best Gaussian and orthogonalize
with respect to all previously selected functions
using Gram–Schmidt (Equation 12). Update the
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Figure 3. Rfactor as a function of the number of Gaussian centers introduced by the matching pursuit algorithm. Grid energies were previously
obtained using a benzene probe, as indicated in the Methods section. Results for three different proteins are shown, with PDB [37] identification
indicated in the figure. The resulting Gaussians were then used in the docking experiments summarized in Tables 2 and 3.

residual. If neither the target error level (Equa-
tion 14) nor the number of target Gaussians are
satisfied, repeat the procedure. The grid is finally
approximated with Equation 13.

Testing the Gaussian mapping approximation

We have carried out several types of tests of the Gaus-
sian mapping approach. Three questions have been ad-
dressed. The first was to know how well the GAGA ap-
proach could fit an arbitrary grid file. The second was
to study how well the fitted pharmacophoric points
could reproduce the actual location of corresponding
chemical groups in known protein–ligand complexes
(hot spot location) in some well-documented cases.
The third was to study the effect that the optimally de-
duced points could have in speeding up and increasing
the accuracy of ligand docking.
1. Grid fitting: Initial studies about the fitting quality
were carried out with simple 1D and 2D functions.
For these cases we knew, by numerical analysis, the
minimal number of Gaussians required to fit the func-
tion under a given error. The algorithm showed a good
performance for these simple cases (data not shown).
Subsequently, we turned to the problem of analyz-
ing the ability of the method to reproduce molecular
shapes, as specified by computed electron densities.

Specifically, for a set of molecules, we compared the
molecular shape given by their electron density with
the electron density obtained upon fitting with GAGA
the grid containing this density to a number of Gaussi-
ans equal to the number of atoms found in the original
molecule. Upon fitting, we quantified the similarity
between both densities in terms of the Rfactor:

Rfactor =

√√√√√Np∑
i=1


f (xi)2 −

(
M∑

j=1
cjgj (xi )

)2



√
Np∑
i=1

f (xi )2

(15)

where Np is the number of grid points and M is the
number of Gaussian functions selected. Finally, we
measured the RMSD of the molecular coordinates of
the molecules obtained after a previous optimal super-
imposition of both grids. Optimal superimposition was
obtained by maximizing the similarity of the densities
according to the Carbó index while performing a com-
plete sampling of rotational space with a step size of
27◦. The Carbó index [33 and references therein] is
defined as:

CAB = zAB(zAAzBB)−1/2 (16)
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The similarity function zAB of densities A and B,
depending upon the orientation tensor �, is defined as
the generalized projection:

zAB(�) =
∫

fA(x)fB(x; �)dx (17)

2. Evaluating hot spots. We have studied the ability
of the Gaussian mapping approach to determine the
position of aromatic interaction sites. For this we stud-
ied, in a set of 53 ligand–receptor complexes (Tables 2
and 3), the distance between the predicted interaction
sites and the corresponding aromatic moieties in the
ligands of the complexes. As a metric of the agree-
ment, we studied the minimum distance between the
set of predicted interaction points and the set of aro-
matic centers found in the ligand. We also studied the
statistical significance of the computed distances. For
that, we randomly placed in the grid box as many in-
teraction centers as Gaussians were originally placed
in the binding site by our algorithm. We then com-
puted the distances between interaction sites and the
aromatic centers in the ligand. We repeated the proced-
ure 10,000 times, and we counted in how many cases
we obtained a distance equal to or better than that ob-
served in the real case. The P-value is the fraction of
this number with respect to the total number of trials.
3. Ligand docking. We have evaluated the Gaussian
mapping approach using only hydrophobic/aromatic
fragments. First, they are difficult cases for com-
pression algorithms, as these interactions are usually
rather spread out over the binding site, lacking the
strong concentration of energy typical of, e.g., hydro-
gen bonds. In fact, matching algorithms typically run
into problems if hydrophobic/aromatic fragments are
placed in the active site [34]. Second, in contrast to
e.g. electrostatic interactions, the underlying molecu-
lar mechanics force field is able to do a reasonable
job describing them, allowing to focus on the proper-
ties of the Gaussian description and not on the details
of how the interaction is being computed. Third, one
of the goals of this paper is to explore the minimum
set of points required for successful docking; the aro-
matic interactions, due to their ability to summarize
the shape of the ligand, are ideal candidates. For a
set of 53 different protein–ligand complexes (Table 2),
we have computed Gaussian centers for aromatic spots
using a benzene probe, with standard AMBER types
and charges of −0.155 for C and 0.155 for H. Cen-
ters and their associated widths for the Gaussians were
generated by first running CGRID and CDOCK [27]
to generate the grid maps, which were processed with

GAGA. Then, the generated Gaussian centers were
used as surrogates of the spheres required by the
DOCK program, which was used both in rigid and
flexible docking modes.

For flexible docking, we first created a flexible lib-
rary of conformers of the ligand. Only torsion angles
in rotatable bonds were considered, with a rotatable
bond defined as a single or exocyclic double bond
having at least one non-hydrogen neighbor on either
side of the bond. Rotations affecting oxygen atoms
in terminal groups, such as carboxylates, phosphates,
sulfonyl, etc. . . were skipped. Only rotameric states
were considered, with the following dihedral angles:
60◦, 180◦and −60◦ for sp3-sp3 bonds; 0◦, 60◦, 120◦,
180◦, −60◦, and −120◦ for sp3-sp2 bonds (when sym-
metry is present on sp2 only 60◦, 180◦ and −60◦ are
considered to avoid redundancies); and 0◦, 180◦ for
sp2-sp2 bonds (again, symmetry existence is checked).
For sp2-sp2 rotatable bonds attached to aromatic sys-
tems 0◦, 90◦, 180◦, −90◦ angles were used (when
symmetry is present on sp2 only 0◦ and 90◦ are
scanned to avoid redundancies); on the other hand,
oxygen-sp3 bonds in esters, and ethers were treated
as regular sp3-sp3 bonds except in cases where the sp3

center is located in a ring (e.g. ribose, glucose deriv-
atives), where eclipsed conformations are a common
trend. For these we consider 0◦, 60◦, 120◦, 180◦, −60◦
and −120◦.

All possible dihedral angle combinations were
generated and the corresponding intramolecular en-
ergy of each of the resulting conformations is com-
puted based on non-bonding 12-6 Lennard-Jones
terms, without considering 1-2 and 1-3 interactions,
and with 1-4 interactions scaled down by a factor of
2, as is customary within the AMBER force field
[28]. No energy minimization was performed in any
of the conformations, thus a VDW energy cutoff of
5 kcal/mol is used to cap each pairwise interaction.
Only conformations with computed VDW energies
within 30 kcal/mol of the global minimum were saved
for docking. To reduce the combinatorial explosion,
for sp3-sp2 bonds the program first evaluates the local
energy, up to 1-4 interactions, associated with each of
its 6 dihedral angles. The three lowest energy values
are then used in the combinatorial search. This pro-
cedure proved very successful in keeping the combin-
atorial size under control, while having minor effects
on the rate of bioactive conformation generation and
docking accuracy (data not shown).

Prior to docking, ligands were parametrized ac-
cording to the AMBER force field. Atom types were
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Table 2. Results from the rigid-body docking experiments with DOCK 3.0 using GAGA
generated Gaussians for 10 different complexes. PDB ID of the complex (PDB); number
of Gaussian points selected in the binding site (Np); Rfactor obtained with those points;
the best scored conformation found in the docking search and its corresponding RMSD
(Best CONT columns); the minimum RMSD conformation found in the search and the
corresponding CONTACT score (Best RMSD columns); the number of orientations saved
by DOCK with low energies (Saved); and the percentage of those with less than 2 Å RMSD
with respect to the X-ray structure (% Succ.).

PDB Np Rfactor Best CONT Best RMSD Saved %Succ.

RMSD CONT RMSD CONT

1fjs 13 0.51 1.50 257 1.50 257 350 0.3

1ajv 12 0.61 0.85 241 0.85 241 1 100.0

2tsc 11 0.54 9.68 104 7.29 70 43 0.0

3ert 11 0.64 0.68 151 0.63 138 17 100.0

1hsb 12 0.53 0.73 141 0.46 124 280 9.6

1rds 14 0.51 3.51 94 3.17 64 501 0.0

1b9v 11 0.49 0.51 169 0.51 169 148 2.7

1ppc 11 0.51 3.27 129 2.16 77 903 0.0

1kel 10 0.52 0.97 186 0.63 178 41 19.5

2fox 11 0.57 7.85 121 5.79 58 87 0.0

1fax 12 0.54 1.20 205 0.97 200 85 11.8

1xka 12 0.56 0.95 204 0.95 204 10 40.0

1dwd 13 0.56 1.29 150 1.29 150 229 0.4

1rt2 11 0.72 0.97 235 0.50 216 12 100.0

1mts 11 0.56 1.12 175 0.87 156 193 4.2

3dfr 11 0.70 1.49 222 0.44 198 6 100.0

3tpi 10 0.60 0.79 157 0.47 154 17 82.4

3cla 12 0.64 4.75 89 1.80 40 1282 0.3

1dwc 13 0.53 1.33 182 0.63 136 251 2.0

1rt1 11 0.66 0.48 166 0.29 153 9 100.0

4dfr 12 0.56 0.88 123 0.79 121 142 2.1

2dbl 12 0.54 9.75 118 3.29 83 426 0.0

1fpu 11 0.74 0.63 212 0.63 212 2 100.0

1dbm 13 0.52 1.15 216 0.87 187 606 0.8

1snc 13 0.56 6.18 139 1.00 125 252 2.0

1tni 10 0.47 4.65 106 1.80 80 226 2.7

1pph 12 0.49 1.98 155 1.98 155 1062 0.1

1srj 14 0.56 6.88 186 2.56 96 1544 0.0

1f0r 12 0.57 1.11 163 1.11 163 316 1.9

1b9t 13 0.48 0.70 131 0.61 122 914 1.3

1bjv 11 0.67 5.37 115 2.86 95 471 0.0

1rnt 12 0.52 4.28 121 1.71 82 2275 0.1

1rob 12 0.49 0.76 132 0.76 132 2082 1.4

2ak3 10 0.54 2.10 116 0.85 110 243 7.8

1bju 13 0.59 1.98 129 1.00 117 297 2.0

1ejn 11 0.67 0.66 187 0.66 187 22 13.6

1c5c 11 0.69 4.03 169 0.78 153 11 18.2

1f3d 12 0.58 6.42 115 0.63 97 198 18.2

1mld 12 0.49 1.28 109 0.69 104 18 27.8

1mrk 13 0.54 0.95 157 0.50 152 940 6.9

1wap 8 0.56 0.37 126 0.37 126 3 66.7

2cmd 11 0.48 1.23 101 1.07 101 43 18.6

6rsa 14 0.51 1.46 113 0.77 105 680 6.5



110

Table 2 (continued).

PDB Np Rfactor Best CONT Best RMSD Saved %Succ.

RMSD CONT RMSD CONT

7tim 9 0.71 4.76 107 4.76 107 5 0.0

1cbs 11 0.60 2.20 110 1.79 59 13 15.4

1fen 10 0.63 2.03 127 0.32 96 30 73.3

2cbs 10 0.59 9.87 109 0.38 99 17 64.7

1dbb 13 0.49 6.92 115 1.59 70 1205 0.3

1die 11 0.51 2.49 116 2.17 100 65 0.0

1tnh 10 0.48 3.91 84 1.09 75 156 30.1

1tnl 10 0.52 4.24 96 1.84 75 282 0.4

1d3h 12 0.70 7.34 156 0.77 121 185 13.0

1flr 12 0.57 1.38 204 1.28 161 64 28.1

assigned automatically [35], and monopolar charges
were fitted to reproduce the molecular electrostatic
potential computed with the MOPAC program [36] us-
ing the AM1 Hamiltonian [37]. Docking with DOCK
3.0 was performed using standard conditions with the
CONTACT scoring function. We measured the RMSD
of the lowest energy solution, the score of the low-
est energy solution, and the computer time required
to achieve it. We also measured the lowest RMSD
found during the docking simulation and the fraction
of poses below the 2 Å cutoff of RMSD with respect
to the crystal structure.

Results

Quality of the Gaussian-based fitting of grid data

The evolution of the Rfactor with the number of selec-
ted Gaussians for the case of fittings to ASA-based
electron densities (see Methods) can be observed in
Figure 1. Molecules in Figure 1 are found in Chart 1.
We show the original ASA-based electron density and
the GAGA-fitted one using identical contour levels
(0.80, arbitrary units). Fitting calculations were car-
ried out restricting the maximum possible number
of Gaussian functions stored in the dictionary to the
number of atoms present in the original molecule, so
as to make results directly comparable. As can be
observed, molecular shapes are correctly reproduced
with the fitting algorithm, although the fitted con-
tours are smoother, with the individual atomic features
partially lost. The quality of the final fittings as a
function of the number of Gaussians can be observed
in Figure 1. Quantitative data for the four molecules

represented in Figure 1 are summarized in Table 1.
The RMSD of the molecular coordinates after optimal
superimposition of the electron densities oscillates
between 0.1–0.3 Å. This suggests that if shape features
of a protein binding site can be captured in a similar
way, the resulting Gaussians may become useful as
pharmacophoric descriptors in screening and docking
ligands in protein binding sites. We devote the next
sections to explore this question.

Detection of hot spots in binding sites

The relationship of the position in the binding site
of the predicted hot spots with the actual location of
these functional groups in ligands bound to the target
has been studied. Since positioning of hydrophobic
and aromatic interaction points is challenging [34], we
have focused our attention to the agreement between
predicted and observed aromatic interaction sites. Fig-
ures 4 and 5 summarize the results for the set of
53 complexes extracted from the Protein Data Bank
(PDB) [38] and studied in this paper. We have com-
puted the minimum distance between the predicted
sites and the geometry center of each aromatic ring
in the ligand, and we have evaluated the significance
of the closest distance by computing the likelihood of
obtaining in a random way a distance equal to or smal-
ler than the one observed. Details of the calculations
can be found in the Methods section. Figure 5 shows
that a confidence level of ∼95% corresponds to a dis-
tance between the Gaussians and the aromatic centers
of ∼1.5 Å, with ∼65% of the interaction points having
an aromatic binding site within 1.5 Å (Figure 4). We
conclude that the interaction points found by Gaussian
mapping for aromatic sites are reasonably accurate,
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Table 3. Results from the flexible docking experiments with DOCK 3.0 using GAGA generated Gaussi-
ans for 10 different complexes. This table shows, together with the PDB ID of the corresponding complex,
the minimum RMSD of the isolated ligand with respect to the X-ray ligand conformation (Min RMSD);
the best scored conformation found in the docking search and its corresponding RMSD (Best CONT
columns); the minimum RMSD conformation found in the search and the corresponding CONTACT
score (Best RMSD columns); number of conformers used in the docking calculation (Scanned); the
number of them saved by DOCK with low energies (Saved); and the docking time per rotamer in seconds
(measured with the timex command in a SGI R12000 processor).

PDB Np Min Best CONT Best RMSD Scanned Saved Time/rot

RMSD RMSD CONT RMSD CONT (s)

1fjs 13 1.36 2.86 243 2.00 209 1538 100 0.22

1ajv 12 1.04 10.08 178 9.04 131 1383 31 0.18

2tsc 11 0.67 3.36 183 2.51 143 1251 100 0.08

3ert 11 0.44 1.53 188 0.97 164 1177 100 0.20

1hsb 12 0.34 5.61 144 0.86 138 663 100 0.10

1rds 14 0.72 5.18 149 2.21 124 648 100 0.14

1b9v 11 0.46 4.19 177 0.89 145 609 100 0.34

1ppc 11 1.60 8.04 184 2.88 154 577 100 0.21

1kel 10 0.74 4.05 190 1.24 166 445 100 0.09

2fox 11 0.68 1.19 258 1.19 258 349 100 0.12

1fax 12 0.78 8.49 217 1.84 188 348 100 0.07

1xka 12 0.66 3.09 209 1.69 193 338 100 0.07

1dwd 13 1.45 3.15 194 2.41 163 298 100 0.28

1rt2 11 0.69 1.34 228 1.09 195 279 5 0.15

1mts 11 1.05 2.22 201 2.19 198 192 100 0.06

3dfr 11 0.93 2.09 244 1.81 243 177 75 0.04

3tpi 10 0.39 2.91 179 0.82 160 177 100 0.06

3cla 12 0.33 5.48 115 3.43 96 171 100 0.15

1dwc 13 2.36 5.90 180 3.64 123 165 100 0.18

1rt1 11 0.43 1.53 182 0.72 176 162 100 0.13

4dfr 12 0.73 6.81 151 1.59 126 148 100 0.08

2dbl 12 0.57 9.50 162 1.86 121 111 100 0.20

1fpu 11 0.30 1.65 217 1.41 217 106 32 0.06

1dbm 13 0.56 2.40 244 1.13 138 68 68 0.32

1snc 13 0.42 4.97 202 1.87 139 66 66 0.19

1tni 10 0.56 5.07 116 1.77 101 65 63 0.04

1pph 12 0.95 4.09 162 2.89 142 60 60 0.22

1srj 14 0.12 2.60 194 2.01 152 58 58 0.70

1f0r 12 1.13 2.52 185 2.52 185 51 51 0.12

1b9t 13 0.35 5.65 144 1.11 130 47 47 0.58

1bjv 11 0.51 10.52 150 2.14 122 34 34 0.12

1rnt 12 0.80 5.55 135 2.38 122 27 27 0.37

1rob 12 0.25 0.86 141 0.79 129 26 26 0.31

2ak3 10 0.24 2.25 149 0.96 115 26 26 0.15

1bju 13 0.33 8.18 153 1.00 152 25 25 0.09

1ejn 11 0.54 3.15 177 2.09 121 18 18 0.07

1c5c 11 0.20 5.86 167 0.72 164 9 9 0.14

1f3d 12 0.30 6.57 124 1.07 112 9 9 0.14

1mld 12 0.09 1.72 113 1.29 111 9 9 0.06

1mrk 13 0.85 2.81 180 1.40 148 9 9 0.35

1wap 8 0.41 2.59 124 0.81 114 9 7 0.07

2cmd 11 0.10 1.04 106 1.04 106 9 9 0.07

6rsa 14 0.38 1.69 130 1.58 117 9 9 0.29
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Table 3 (continued).

PDB Np Min Best CONT Best RMSD Scanned Saved Time/rot

RMSD RMSD CONT RMSD CONT (s)

7tim 9 0.45 1.96 114 1.96 114 9 4 0.06

1cbs 11 0.32 1.54 118 1.54 118 4 4 0.20

1fen 10 0.47 9.38 141 1.24 111 4 4 0.20

2cbs 10 0.10 4.58 119 0.79 112 4 4 0.18

1dbb 13 0.47 6.75 147 2.12 128 3 3 0.56

1die 11 0.33 2.52 115 2.52 115 3 3 0.13

1tnh 10 0.06 3.92 88 1.41 80 3 3 0.15

1tnl 10 0.10 4.25 106 2.25 96 3 3 0.14

1d3h 12 0.04 2.40 155 2.24 151 2 2 0.39

1flr 12 0.41 1.28 183 1.28 183 2 2 0.44

Table 4. Comparing GAGA and SPHGEN performances to generate interaction points for docking with
DOCK 3.0. Two different complexes, 3dfr and 6rsa, have been used for this comparison. Interaction
points with GAGA were generated as described in Methods. Interaction points with SPHGEN were
obtained from the demos available in the DOCK package distribution (61 interaction points for 3dfr and
47 for 6rsa). See caption of Table 3 for description of the columns.

PDB Best CONT Best RMSD Scanned Saved Percent Time/rot

RMSD CONT RMSD CONT success (s)

GAGA 3dfr 2.09 244 1.81 243 177 75 2 0.06

6rsa 1.69 130 1.58 117 9 9 56 0.39

SPHGEN

3dfr 2.52 262 1.15 255 177 100 4 7.34

6rsa 1.49 144 1.44 136 9 9 22 1.16

and they will likely be helpful in docking algorithms.
The next section explores this issue.

Application to molecular docking with the program
DOCK

We investigated whether the small number of inter-
action points selected by Gaussian mapping of hy-
drophobic/aromatic interactions, between 11 and 12,
is enough to efficiently sample native-like complexes
using standard docking algorithms. Because our aro-
matic Gaussian centers are positioned so that they
account for the maximal amount of energetic inform-
ation for the probe within the binding site, we would
expect them to be particularly well suited for the task.
We have used a test set of 53 complexes extracted from
the PDB [38] for this experiment (Tables 2 and 3), and
selected a standard negative sphere-based docking al-
gorithm such as DOCK. The Gaussian centers placed
by GAGA were then used to replace the sphere centers

generated by the program SPHGEN [17] within the
DOCK package, as described in Methods. The rest of
the computations in DOCK 3.0 were performed with
standard parameters.

Results are summarized in Table 2 (rigid docking)
and Table 3 (flexible docking). The number of selec-
ted interaction points is in all cases very similar, with
a mean of 11.5, in spite of differences in shape and
interaction properties of the binding sites. The evol-
ution of the Rfactor as a function of the number of
selected Gaussians is recorded in Figure 3 for three
different cases. As in the case of electron densities, de-
cay in Rfactor follows an exponential law, as predicted
from theoretical arguments. At the automatically se-
lected number of interaction points, the average Rfactor

is 0.57. These observations suggest that with 11–12
functions only the coherent part of the signal in the
grid energies is captured by the Gaussian description.
However, as observed in Figure 4, this coarse recovery
is enough to approximately describe the shape of the
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Chart 1. Structure of the molecules shown in Figure 2, with their
PDB [38] ID.

binding site and likely active ligands binding to it. The
small set of interaction aromatic/hydrophobic points is
enough to successfully sample native-like geometries.
Tables 2 and 3 show that for ∼70% of the cases in
flexible docking, and ∼85% in rigid docking, DOCK
is able to sample geometries below 2 Å among the 100
upper ranking decoys using Gaussian mapping. The
success rate in flexible docking considering only the
highest scoring pose is, however, considerably lower,
only ∼25% in flexible docking and ∼58% in rigid
docking. Most likely this is related to the force field
used to score the solutions (the CONTACT score in
DOCK). Recently, in a comparative study of several
docking algorithms, the Brooks group [39] obtained a
success docking rate for DOCK of ∼29% in flexible
docking, comparable to ours. This result suggests that
our success rate for the first ranking pose is not signi-
ficantly worse than the one obtained with the standard
DOCK program. As for the 30% of sampling failures,
∼30% of them correspond to cases where the best
sampled conformer has an RMSD above 1.0 Å from
the crystal structure in the complex, suggesting that for
these cases the sampling of the ligand conformational
space is insufficient.

Our most important result is that, due to the small
number of points selected and the coarse rotameric de-
scription, computing times with Gaussian mapping are
highly reduced, while preserving sampling of native-
like poses. In Table 4 we compare the computing
times and resolutions using the standard spheres gen-
erated with SPHGEN and the interaction points gener-
ated with GAGA for two representative cases. These
two cases were selected because they are provided
as examples within the different DOCK distributions.
Therefore they can be considered to provide unbiased
comparisons between the results with both center
generation methods (SPHGEN and GAGA). It is re-
markable that, using only aromatic points, docking
performances within DOCK remain similar, whether
the interaction points were generated with GAGA or
with SPHGEN. In contrast, docking times are dra-
matically shorter with GAGA, with speed-ups per
conformer of ∼100 times for the case of 3dfr and
of ∼3 times for 6rsa. For 3dfr and using DOCK 4.0
with incremental construction, the reported total dock-
ing times on a R10000 processor ensuring native-like
sampling are 200 s [16]. The total docking time with
DOCK 3.0 using our Gaussians and coarse rotamer de-
scription in a R12000, with 2% native-like poses in the
upper ranking list, is 10 s (Table 4). While conditions
are not directly comparable, the numbers do suggest
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a substantial speed-up in docking times, of a factor of
20 in this case. For the set of 53 complexes examined
in this work, the average time per conformation (on a
SGI R12000 processor) is 0.18 s. The average ligand
is represented in our test set with ∼200 conformers,
and this translates to an average time of ∼35 s per mo-
lecule. The average docking times recently reported
by the Brooks group [39] with DOCK are ∼143 s on a
similar machine. Therefore, a speed-up factor of ∼4–5
is expected on average while keeping similar predict-
ive properties. Clustering of conformers [40], or the
use of simplified representations for the ligand, can
potentially reduce these docking times even further.

The data presented in Table 4 also suggest that,
in practical applications, additional filtering might be
required. Re-ranking the upper-ranking configurations
selected with the CONTACT scoring using more soph-
isticated energy functions, such as the GB-SA method
[41], might be of interest, and will be the subject of
future research. While a more comprehensive study is
clearly needed before drawing definitive conclusions,
the results presented here are promising in pointing
to Gaussian mapping as a way to increase speed in
docking algorithms.

Discussion

In this paper we present a new approach to obtain a
quasi-optimal design of pharmacophoric points from
receptor binding sites, where each pharmacophoric
point is modeled as a Gaussian center. We first gen-
erate a molecular mechanics energy map of the in-
teraction of representative molecular probes with the
residues in the active site at regular lattice locations.
This part of the method shows close similarities both
with GRID [2–6] and MCSS [7–9]. Then, and given
this fragment-based energy grid, the second part of
the procedure attempts to find a minimal number of
Gaussian centers able to account for the energy distri-
bution stored in the grid, so that each selected point
carries with it maximal information content (i.e., max-
imal correlation) about the energy distribution of the
probe in the binding site. Thus, by construction, the
procedure attempts to position Gaussian centers of ap-
propriate widths in regions of energy minima in the
binding site. These are regions where the highest like-
lihood to find an atom of the corresponding type in
the ligand can be expected. We have also shown initial
evidence that these sets of centers are well suited for
docking. We have, on purpose, tested the generated

points based only on hydrophobic/aromatic potentials,
in order to reduce the number of interaction points to
an absolute minimum. Tests with the DOCK program,
where the traditional set of spheres derived from a
purely geometric analysis of the binding site has been
replaced by a small set of fitted Gaussians, have shown
good abilities to sample native-like binding modes
with a reduction by a factor of ∼4–5 in computing
times. Addition of hydrogen bond interaction points
should increase the predictive properties with modest
increments in computing times.

A related idea has been described recently by
Joseph-McCarthy and Alvarez [20]. These authors
have described a method to determine chemically
labeled site points by automatically extracting them
from a clustering of selected low-energy functional-
group minima obtained with MCSS. They have also
shown that the pharmacophoric site points can be
directly matched to the pharmacophoric features of
database molecules with DOCK to place the small
molecules into the binding site. In agreement with
our results, they have shown that biasing the search
using points selected with energy criteria allows for
more effective sampling of the target site. A difference
with their work is that we attempt not only to select
these energy minima, but also to ensure that the set of
points selected is quasi-optimal, in the sense described
in the Introduction. We show that quasi-optimality
in the design allows drastic reductions in computing
times without severely affecting the ability to sample
native-like poses.

The idea of compressing grid-sampled energies
into a reduced Gaussian set to deduce pharmacophores
is not new. Previously, Klebe and co-workers [21] de-
scribed a way to derive shape descriptors built from
anisotropic Gaussian contributions. These were ob-
tained from a fit to propensity distributions stored
in IsoStar [22], a database of interaction geometries
between a common central group and various inter-
acting moieties extracted from small-molecule crystal
structures. The different initial densities, test cases
and accuracy measures used in their study and ours
preclude a direct comparison. In general terms, their
approach bears considerable similarities with the one
presented here, although there are also some notice-
able differences. Besides using statistically derived
propensities instead of molecular mechanics energies,
Klebe and co-workers use anisotropic Gaussian func-
tions, instead of the isotropic Gaussians used in this
work, to fit the field. Thus, in their approach, 10
parameters need to be fitted per function, while in
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Figure 4. Cumulative distribution of the closest Gaussian-aromatic center distance for each one of the aromatic centers in the set (complexes
in Tables 2 and 3), as a function of the distance.

Figure 5. P-value as a function of distance for each one of the aromatic centers in the set of complexes in Tables 2 and 3. The regression fit to
a power law is also shown.
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Figure 6. Gaussian mapping at work, as exemplified with 1rt1. (A) Contour (at −6 kcal/mol) of a benzene probe in the binding site, computed
with CGRID and CDOCK; (B) Gaussians fitted by GAGA to the above contour. The small blue spheres depict the Gaussian centers, while
the red wine envelope corresponds to a Connolly surface of the spheres using their associated bandwidth as atomic radii. Also shown in the
figure is the X-ray conformation of the ligand in 1rt1, so that the closeness between ligand atoms and Gaussian centers can be appreciated; (C)
superimposition of the best scored (CONTACT) docking conformation of 1rt1 upon flexible docking with DOCK using the set of interaction
points in B and the X-ray structure. RMSD is 1.53 Å.

our representation 5 parameters are required. While
the fitting procedure could be adapted to anisotropic
Gaussians, the computational simplicity and amenab-
ility to analytical treatment of spherical Gaussians lead
us to implement only the isotropic case. Another im-
portant difference lies in the position and number of
Gaussians. Again, their approach did not guarantee to
select a close to optimal set of centers. In any case,
a detailed comparison between both approaches under
similar conditions would be of interest.

More generally, grid compression with simplified
functionals is the subject of intensive research in dif-
ferent areas of computational structural biology. For
example, Wriggers and co-workers have pioneered the
use of vector quantization [42, 43], a mathematical
technique closely related to the matching pursuits em-
ployed in this work, to model electron microscopy
data. More recently, Carazo [44] and co-workers have
refined the vector quantization approach with a modi-
fication that incorporates a Gaussian kernel, in order
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to select the points within the macromolecule that best
approximate the probability density function of the
original volume data. The idea is very close in spirit
to the one presented here, although applied within a
different mathematical framework and in the context
of electron microscopy data. These areas could benefit
from the generality and compactness of the matching
pursuits described here.

One of the limitations of our method, in its current
form, is the computational burden of the prepara-
tion phase, about 1 min on average. While this is
not an obstacle when the objective is screening mo-
lecular databases, it does make the current technique
uncompetitive for docking individual molecules. Nev-
ertheless, there is considerable room to improve the
computational speed, as we have not attempted to
optimize the code. First, calculations within the grid
generation program, CGRID [27], are slow due to the
energy minimization of the fragment used as probe.
Here, the use of statistical potentials [12, 45, 46],
stored as look-up tables and hence faster to com-
pute, could be of interest. Second, our docking results
seem to indicate that only a coarse-level coverage of
the different energy minima within the binding site
is required. Therefore, it is likely that the use of
non-orthogonal matching pursuits suffices for this par-
ticular application. For the coherent part of the signal,
non-orthogonal matching pursuits are computationally
more efficient [31, 32]. Third, since the overlap matrix
used in the least-square fitting procedure is sparse, it
is suitable for the application of special, fast diagonal-
ization techniques, speeding up the calculation of the
inverse.

The integration of the Gaussian descriptors with
docking techniques can be extended and improved in
a number of ways. One important advantage of the
approach presented here over the use of the more
traditional spheres or interaction points is the flexib-
ility that they allow in the criteria used for the hot
spots, accommodating different objectives in a virtual
screening search.
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